Pierwiastki


Spis treści

  1. Pierwiastkowanie.
  2. Działania na pierwiastkach.

Pierwiastkowanie.

 Pierwiastkowanie jest to działanie odwrotne do potęgowania.

Definicja: Pierwiastek

gdzie,

- stopień pierwiastka

- liczba podpierwiastkowa

- pierwiastek n-tego stopnia z (wynik pierwiastkowania)


Jeżeli i są liczbami nieujemnymi  oraz jest liczbą naturalną różną od , to:

   wtedy i tylko wtedy, gdy  

Jeżeli  jest liczbą ujemną i jest liczbą nieparzystą, to

 

Zatem umiemy policzyć:

  • pierwiastek dowolnego stopnia z liczb nieujemnych i wynikiem tego pierwiastkowania jest liczba nieujemna
  • pierwiastek nieparzystego stopnia z liczby ujemnej ( , bo )

 

UWAGA! 

W zbiorze liczb rzeczywistych nie istnieje pierwiastek parzystego stopnia z liczby ujemnej. 

np. , bo nie ma takiej liczby rzeczywistej , aby spełnione było równanie .

 

Przykład:

, ponieważ - czytamy "pierwiastek z dziewięciu"

, ponieważ - czytamy "pierwiastek trzeciego stopnia z dwudziestu siedmiu"

, ponieważ - czytamy "pierwiastek czwartego stopnia z szesnastu"

  • Zaznacz co jest prawdą a co fałszem
    Approved-icon Alert-icon

Działania na pierwiastkach.

Poniżej znajduje sie lista działań  jakie możemy wykonywać na pierwiastkach.

 

Zakładamy, że i są liczbami nieujemnymi oraz i są to liczby naturalne różne od .

 

Wzór: Pierwiastek iloczynu.

 

Pierwiastek iloczynu jest równy iloczynowi pierwiastków.

Przykład:

 

Wzór: Pierwiastek z pierwiastka.

Przykład:

 

Wzór: Potęga pierwiastka.

Przykład:

 

Wzór: Włączanie liczby pod pierwiastek.

Przykład:

 

Wzór: Pierwiastek ilorazu

, dla

Pierwiastek ilorazu jest równy ilorazowi pierwiastków.

Przykład:

 

 

Przykład:

 

Myślę, że powyższy wzór wymaga wyjaśnień. Trzeba tutaj koniecznie przypomnieć, że nie umiemy obliczać pierwiastków parzystego stopnia z liczb ujemnych. Z pierwiastkami nieparzystego stopnia nie ma problemu, bo umiemy je obliczać zarówno dla liczb dodatnich jak i ujemnych ( dlatego jeżeli jest nieparzyste to możemy odrazu "skrócić" pierwiastek z potęgą i  otrzymamy  poprostu ). Teraz zwróć uwagę jak to wygląda, jeżeli jest liczbą parzystą. Spójrz na przykład poniżej. To samo działanie liczymy na dwa sposoby:

 1) bez skracania pierwiastka ( najpierw potęgujemy liczbę pod pierwiastekiem, a następnie wyciągamy pierwiastek):

W przypadku, gdy jest liczbą parzystą, "skracając"  pierwiastek z potęgą, musimy zastosować wartość bezwzględna, aby otrzymać to co powyżej. Bez tego otrzymalibyśmy inny wynik, przy tym samym działaniu! 

2) "skracamy" pierwiastek z potęgą ( w wyniku musimy otrzymać liczbę dodatnią, bo pierwiastek jest parzystego stopnia):

 

Przykład:

Dopasuj elementy po prawej do elementów po lewej




Jeżeli materiał był dla Ciebie pomocny, pomóż nam w promocji i podziel się z innymi linkiem.
Kliknij w poniższe przyciski. Dzięki :)

Przydatne

Inne osoby czytały także

  1. Potęgi

Zadania do przećwiczenia (2):

Liceum » Pierwiastki i potęgi » #428
7

Oblicz .


P
K
Liceum » Pierwiastki i potęgi » #1036
0

Wynikiem działania jest:


P
T

Zobacz zadania z działu pierwiastki i potęgi(18)


Komentarze (
5
):