Masz pytania? Zadzwoń: (12) 400 46 75 lub napisz.

Dany jest okrąg o środku w punkcie S i promieniu r. Na przedłużeniu cięciwy AB poza punkt B odłożono odcinek BC równy promieniowi danego okręgu. Przez punkty C i S poprowadzono prostą. Prosta CS przecina dany okrąg w punktach D i E (zobacz rysunek). Wykaż, że jeżeli miara kąta ACS jest równa alpha, to miara kąta ASD jest równa 3 alpha.. style="width: 50%;""" data-filename="maj 19 29.png">

Zadanie 1920

Pakiet matura 2020 Kurs i poradniki 50% taniej

Nie przegap okazji! Testuj kurs przez 14 dni bez żadnego ryzyka. Dowiedz się więcej
Drukuj

Dany jest okrąg o środku w punkcie S i promieniu r. Na przedłużeniu cięciwy AB poza punkt B odłożono odcinek BC równy promieniowi danego okręgu. Przez punkty C i S poprowadzono prostą. Prosta CS przecina dany okrąg w punktach D i E (zobacz rysunek). Wykaż, że jeżeli miara kąta ACS jest równa \alpha, to miara kąta ASD jest równa 3\alpha..


Musisz się zalogować aby zobaczyć rozwiązanie.

Brak komentarzy

Dodaj komentarz

Musisz się zalogować aby dodać komentarz
Strona korzysta z plików cookie w celu realizacji usług zgodnie z Polityką Prywatności. Możesz określić warunki przechowywania lub dostępu do cookie w twojej przeglądarce lub konfiguracji usługi.