dane są wielomiany W(x) - 2$x^(2)$ - 5x + 3 i P(x) =$x^(3)$+ 5 $x^(2)$+2x - 1. Wielomian G(x) = 2W(x) - P(x) jest równy?

Zadanie 7042 (rozwiązane)

Ekspresowy Kurs Maturalny z matematyki

Zdajesz matematykę bo musisz? Przygotuj się do matury nawet w 7 dni! Zapisz się dzisiaj
Zadanie dodane przez Kornelia21 , 01.12.2013 12:25
Default avatar
dane są wielomiany W(x) - 2x^(2) - 5x + 3 i P(x) =x^(3)+ 5 x^(2)+2x - 1. Wielomian G(x) = 2W(x) - P(x) jest równy?

Nadesłane rozwiązania ( 2 )

Rozwiązanie 1 dodane przez maturzystka13 , 01.12.2013 12:32
Maturzystka13 20131128165809 thumb
w(x)= 2x^{2} - 5x +3 czy w(x)= -2x^{2} - 5x +3 ?
Musisz się zalogować aby dodać komentarz
Rozwiązanie 2 dodane przez maturzystka13 , 01.12.2013 12:40
Maturzystka13 20131128165809 thumb
w(x) = 2 x^{2} - 5x + 3
p(x) = x^{3} + 5 x^{2} + 2x -1

G(x) = 2 W(x) - P(x)

G(x) = 2 ( 2 x^{2} - 5x + 3) - (x^{3} + 5 x^{2} + 2x -1)

G(x) = 4 x^{2} - 10x +6 - x^{3} - 5x^{2} -2x +1

G(x) = - x^{3} - x^{2} - 12x +7

g(x) = x^{3} + x^{2} + 12x - 7
Musisz się zalogować aby dodać komentarz

Znasz inny sposób na rozwiązanie tego zadania?

Dodaj swoje rozwiązanie

Dodaj swoje rozwiązanie:

Zabronione jest kopiowanie wszelkich treści!
Musisz się zalogować aby dodać rozwiazanie do zadania.
Strona korzysta z plików cookie w celu realizacji usług zgodnie z Polityką Prywatności. Możesz określić warunki przechowywania lub dostępu do cookie w twojej przeglądarce lub konfiguracji usługi.