Co to jest przekrój osiowy stożka?

Gdy przetniemy stożek na dwie połowy przez jego wierzchołek i średnicę podstawy otrzymamy jego przekrój osiowy. 

Przekrojem osiowym stożka jest trójkąt równoramienny o ramionach długości l i podstawie długości 2r.

przekrój osiowy stożka

Pole przekroju osiowego stożka

Pole przekroju osiowego stożka to pole trójkąta, czyli 

P = \frac{1}{2} a H

W naszym przypadku podstawa wynosi 2r czyli otrzymamy:

P = \frac{1}{2} 2r * H = r H

Przykład 1

Oblicz pole przekroju osiowego stożka o wysokości 5 cm i promieniu podstawy równym 3 cm. 

Mając wszystkie potrzebne dane w zadaniu możemy obliczyć pole przekroju osiowego stożka: 

P = r * H = 3 * 5 = 15

Odp: Pole wynosi 15 cm kwadratowych.


Zadanie 1

Przekrój osiowy stożka jest trójkątem równoramiennym o podstawie 6 i wysokości  4 . Oblicz pole powierzchni bocznej tego stożka.

Zobacz rozwiązanie

Zadanie 2

Przekrój osiowy stożka jest trójkątem równobocznym, o boku długości  8 . Pole boczne tego stożka wynosi:

Zobacz rozwiązanie

Zadanie 3

Przekrój osiowy stożka jest trójkątem równobocznym, o boku długości  6 . Pole boczne tego stożka wynosi:

Zobacz rozwiązanie

Przeczytaj także:

Brak komentarzy

Dodaj komentarz

Musisz się zalogować aby dodać komentarz