1. Pole prostokąta
  2. Obwód prostokąta
  3. Przekątna prostokąta

Co to jest prostokąt?

Definicja: Prostokąt

Prostokąt to czworokąt, którego wszystkie kąty są  proste.

Obwód prostokąta:

Obw = 2a + 2b

Pole prostokąta:

P = a * b

Przekątna prostokąta:

d = \sqrt{a^2 + b^2}

Przykład 1

Oblicz długości boków prostokąta, jeżeli wiadomo, że obwód tego prostokąta wynosi 16, a stosunek długości jego boków wynosi 1:3.

 

Wprowadzamy następujące oznaczenia:

a - długość krótszego boku

3a - długość dłuższego boku ( Dłuższy bok jest trzy razy dłuższy od krótszego, ze względu na to, że proporcja między długością boków wynosi 1:3.

W prostokącie mamy dwa boki krótsze i dwa boki dłuższe. Obwód całego prostokąta to suma długości jego wszystkich boków:

2* a +2 * 3a=2a+6a=8a.

Z treści zadania wiemy też, że obwód prostokąta wynosi 16, dlatego:

8a=16

a=2

Obliczyliśmy długość krótszego boku. Długość dłuższego boku, to

3a=6.

Długości boków prostokąta to 2 i 6.


Przykład 2

Jak zmieni się pole prostokąta, jeżeli długość każdego z jego boków zwiększymy dwukrotnie?

 

Wprowadźmy oznaczenia:

a,\ b - długości boków prostokąta przed zmianą

Wtedy pole tego prostokąta wynosi:

P_1=ab

Jeżeli długość każdego z boków zwiększymy dwukrotnie, to będą one wynosić:

2a,\ 2b.

Wtedy pole prostokąta to:

P_2=2a* 2b=4ab

 

Liczymy iloraz, aby sprawdzić jak zmieniło się pole:

\cfrac{P_2}{P_1}=\cfrac{4ab}{ab}=4.

Pole prostokąta po zmianach zwiększy się czterokrotnie.

Własności prostokąta:

  • Prostokąt jest równoległobokiem.
  • Wszystkie kąty w prostokącie są proste.
  • Prostokąt ma dwie pary boków tej samej długości.
  • Przekątne prostokąta są tej samej długości i przecinają się w połowie.

|AC|=|BD|

Zaznacz co jest prawdą, a co fałszem.

Przekątna prostokąta o długościach boków 4 i 1 wynosi \sqrt{17}.
Jeżeli pole prostokąta wynosi 6,a jego obwód 10, to długości boków prostokąta to 3 i 5.

Czy prostokąt jest kwadratem?

W szczególnym przypadku gdy a = b prostokąt jest kwadratem, bo każdy kwadrat jest prostokątem. Jednak w każdym innym przypadku gdy  a \neq b prostokąt nie jest kwadratem.

Zadanie 1

Ile wynosi pole prostokąta ABCD?

Zobacz rozwiązanie

Zadanie 2

Czworokąt ABCD jest prostokątem. Wiedząc, że |BQ|=|PQ|=|PD|=5 oblicz długość odcinka |AP|.

Zobacz rozwiązanie

Zadanie 3

Dany jest prostokąt ABCD (patrzy rysunek). Wewnątrz prostokąta leży punkt M. Udowodnij, że:

|AM|^2+|CM|^2=|BM|^2+|DM|^2

Zobacz rozwiązanie

Przeczytaj także:

Brak komentarzy

Dodaj komentarz

Musisz się zalogować aby dodać komentarz