Wybierz dział:

Zadanie 7507 (rozwiązane)

(x^{-3} + 3x^{-2})(2x^{-3} + x^{-4}$)

Nie wiem, jak się za to zabrać, gdyż żadna zasada z tablic do tego nie pasuje, proszę nie tyle o rozwiązanie, co o sposób.

Zadanie 7506 (rozwiązane)

zadanie7
Wykres funkcji wykładniczej f(x)= 2* przesunięto wzdłuż osi Ox o 3 jednostki w prawo i otrzymano wykres funkcji g. Wówczas prawdziwa jest równość

A. g(1) =5
B. g(1) = 1/8
C.g(1) = 16
D. g(1) = 1/4

Zadanie 7505 (rozwiązane)

Na jednym z serwisów matematycznych natknąłem się na zadanko o następującej treści:
Uzasadnij, że jeżeli cos \alpha\neq0, to prawdą jest że (1+sin\alpha)*(\frac{1}{cos \alpha}-tg \alpha)=cos\alpha

Zaś w rozwiązaniu jest napisane coś takiego (przekształcenie lewej strony):
(1+sin\alpha)*(\frac{1}{cos \alpha}-tg \alpha)=
=(1+sin\alpha)*(\frac{1}{cos \alpha}-\frac{sin\alpha}{cos\alpha})=
=\frac{(1+sin\alpha)*(1-sin\alpha)}{cos\alpha}= (...)

Dalej to już tylko skracanie, z czego wychodzi prawa strona tożsamości, którą należało uzasadnić.
Czy ktoś mógłby mnie naprowadzić, dlaczego (1+sin a) zostało podzielone przez cos a? Dlaczego tak można?
Kiedy próbuję uzasadnić tę tożsamość własnoręcznie, wychodzą mi sprzeczności :P Ale wyrobię się (przynajmniej mam nadzieję :P).
Niemniej - może mi ktoś pomóc? Byłbym wdzięczny.

Zadanie 7504 (rozwiązane)

Znajdź dwie ostatnie niezerowe cyfry liczby 2015! (silnia)

Zadanie 7503 (rozwiązane)

Wszystkie krawędzie ostrosłupa prawidłowego czworokątnego maja długość 12cm. Oblicz pole powierzchni całkowitej. Wyznacz sinus kąta nachylenia ściany bocznej do płaszczyzny podstawy tego ostrosłupa.

Zadanie 7502 (rozwiązane)

5. Wyniki klasówki z matematyki, której średnia ocen była równa 3,5 przedstawiono w tabeli.
Oceny 1 2 3 4 5 6
Liczba uczniów 2 2 x 9 3 2
Opracuj dowolny diagram ilościowy i procentowy

Zadanie 7501 (rozwiązane)

1. Ciąg (9, 18, x) jest geometryczny, a ciąg (x, 30, y) jest arytmetyczny.
Oblicz średnią arytmetyczną oraz medianę liczb: 10, x, y, 12, 12, 18, 30.

Zadanie 7500 (rozwiązane)

3. W ostrosłupie prawidłowym czworokątnym o krawędzi podstawy 12 cm, kąt między wysokościami przeciwległych ścian bocznych jest prosty. Oblicz pole powierzchni bocznej tego ostrosłupa.
4. Oblicz objętość i pole powierzchni bocznej stożka, którego tworząca o długości 4 jest nachylona do płaszczyzny podstawy pod kątem .

Zadanie 7499 (rozwiązane)

1. Ciąg (9, 18, x) jest geometryczny, a ciąg (x, 30, y) jest arytmetyczny.
Oblicz średnią arytmetyczną oraz medianę liczb: 10, x, y, 12, 12, 18, 30.

2. Objętość stożka wynosi 6. Promień podstawy stożka jest równy promieniowi kuli i 3 razy mniejszy od wysokości stożka. Oblicz objętość kuli.

6. Rzucamy dwa razy sześcienną kostką do gry. Oblicz prawdopodobieństwo wyrzucenia w obu rzutach liczby oczek podzielnej przez 3.

Zadanie 7498 (rozwiązane)

Kawa w filiżance po 3 minutach od momentu zalania wrzątkiem ma
temperaturę 90℃. Wyznaczyć czas, po którym kawa osiągnie
temperaturę 40℃, jeżeli temperatura otoczenia wynosi 22℃.

Zadanie 7497 (rozwiązane)

Krótsza podstawa trapezu równoramiennego ma długość 5 cm.Ramię ma długość 4 cm i jest nachylone do podstawy pod kątem 30 stopni.Oblicz pole tego trapezu

Zadanie 7496

wysokość graniastosłupa prostego trujkątnego ma długość 1 , dwie przekątne ścian bocznych poprowadzone z tego samego wierzchołka mają długość \sqrt{3} i są do siebie prostopadłe.
Pod jakimi kątami nachylone są do siebie ściany boczne tego graniastosłupa?

Zadanie 7495

wysokość graniastosłupa prostego ma długość \sqrt{15} a jego podstawą jest trapez równoramienny o bokach długości 3, \sqrt{2} , 1, \sqrt{2} .
a) znajdź miarę kątów między sąsiednimi ścianami bocznymi.
b) pod jakimi kątami przekątna graniastosłupa jest nachylona do podstawy... zadanie potrzebne mi jest na 25,03,14r

Zadanie 7494

Podaj dziedzinę i zbiór wartości funkcji f(x)= /frac{3}{2}

Zadanie 7493 (rozwiązane)

Wielomian W(x)=x^{3} - (a+b)x^{2} - (a - b)x + 3, x∊R, jest podzielny przez wielomian P(x)=x^{2} - 4x + 3. Wyznacz a i b, a następnie rozwiąż równianie W(x)=0

Zadanie 7492 (rozwiązane)

na okregu o promieniu 3 opisano tójkąt równoramienny o kącie przy wierzchołku 120 stopni oblicz dlugośc boków tego trójkąta

Zadanie 7491

Wyznacz wzór funkcji kwadratowej, która jest:
a. malejąca w przedziele (-\infty;1> i rosnąca w przedziale <1;\infty), osiaga wartość najmniejsza równą -3 i jej wykres przechodzi przez punkt P=(2;-1)
b. malejąca w przedziale (-\infty;-3> i jest rosnąca w przedziale <-3;\infty) jednym z jej miejsc zerowych jest x=-5 i jej wykres ma z prostą y=-8 dokładnie jeden punkt wspólny,
c. rosnąca w prziedziale (-\infty;3> i malejąca e przedziale <3;\infty), ma dokładnie jedno miejsce zerowe a jej wykres przeciana oś Oy w punkcie o rzędnej -9.

Z góry dziękuje. :)

Zadanie 7490 (rozwiązane)

Na pięciu kartonikach napisane są litery AALOO. Zakrywamy kartoniki i losujemy z nich trzy układające jeden obok drugiego w kolejnosci wylosowania.
a) narysuj drzewko opisujące doświadczenie
b)oceń ,z których wyrażeń mają największą szansę wylosowania wyrazy OLA,ALA,LAO,OLO

Zadanie 7489 (rozwiązane)

wykonaj dziłanie
a) (x-2y)(x+2y)
b) (x+2y)^2

Zadanie 7488 (rozwiązane)

(x-2y)(x+2y)

Zadanie 7487 (rozwiązane)

Napisz równanie okręgu, którego środek leży na prostej y=-2x,i który przechodzi przez punkty A=(-4,-5) i B=(-2,-1)

Zadanie 7486 (rozwiązane)

Znajdź rozwiązanie szczególne pewnego równana różniczkowego, jeżeli dane jest rozwiązanie ogólne tego równania oraz warunki początkowe
x^2-y^2=C C-stała y(0)=5

Zadanie 7484

Przedsiębiorstwo X zaciągnęło kredyt w banku komercyjnym, w wysokości 12000 zl na okres roczny. Oprocentowanie w skali roku 12 %, raty kredytu są równe i splacane miesiecznie. Jakie koszty poniesie przedsiębiorstwo, gdy banki przy spłacie bedzie kierowal sie podwyzka "malejacej stopy zadłużenia", a jakie gdy nie bedzie uwzglednial tej polityki. Odsetki tez sa splacane miesiecznie.

Zadanie 7482 (rozwiązane)

Zadanie6
Miejscem zerowym funkcji liniowej f(x) = (2-m)x+3 jest liczba -3. Wynika stąd, że..
A. m=2 B. m=1 C. m=-5/3 D. m=-3

Prosze o rozwiązanie :))

Zadanie 7481 (rozwiązane)

zadanie 4
Liczba o 40% większa od liczby a jest równa 17,5. Zatem:
A. a=25 B. a=13.5 C. a=12,5 D. a= 10,5

Prosiłabym o rozwiązanie a nie samą odpowiedź :)
1 2 ... 19 20 21 23 25 26 27 ... 296 297