Wybierz dział:
Rzucamy dwa razy kostką sześcienną do gry. Oblicz prawdopodobieństwo tego. że: a) za pierwszym razem wypadła liczba parzysta i suma wyrzuconych oczek nie przekracza 10 b) różnica wyrzuconych oczek za pierwszym i drugim razem jest większa od 3
w worku znajdują się 3 kule białe, 6 zielonych, 1 czarna. wyciągamy kolejno bez zwracania dwie kule. oblicz prawdopodobieństwo tego, że: a) obie kule będą tego samego koloru b) co najmniej jedna kula będzie zielona
11. Pierwsza liczba stanowi 40% drugiej liczby. Różnica większej i mniejszej z tych liczb jest o 2 większa od mniejszej liczby. Znajdź te liczby.
10. We wtorek łódź przepłynęła 43km, płynąc 2 godziny w górę rzeki i godzinę w dół rzeki. W środę łódka przepłynęła 64km - godzinę płynęła w górę rzeki i 3 godziny w dół rzeki. Oblicz prędkość własną łódki i prędkość prądu rzeki.
9. Dziesięcioprocentowy roztwór soli zmieszano z roztworem pięćdziesięcioprocentowym, otrzymując 10kg roztworu trzydziestoprocentowego. Którego z roztworów zmieszano więcej i o ile?
8. W liczbie trzycyfrowej podzielnej przez 2 i 5 cyfra setek jest o pięć mniejsza od cyfry dziesiątek. Jeżeli zamienimy miejscami cyfry dziesiątek i setek, to otrzymamy liczbę o 450 większą od początkowej. Znajdź liczbę początkową.
7. Suma kwadratów dwóch liczb naturalnych jest równa 25. Pierwsza liczba stanowi 0,75 drugiej liczby. Różnica większej i mniejszej z tych liczb jest równa:
a) 1;
b) 2;
c) 3;
d) 7.
6. Wierzchołkami trójkąta ABC są punkty A=(-1,3), B=(2,5), C=(8,0). Oblicz współrzędne punktu przecięcia wysokości poprowadzonej z wierzchołka B z prostą AC.
5. Wyznacz współczynniki a i b we wzorze funkcji f(x)=ax+b, wierząc, że f(5)=-2 oraz f(10)=1.
4. Wyznacz równanie prostej przechodzącej przez punkt A=(1,-6) oraz przez punkt B=(-2,-9).
3. Wykresy funkcji określonych wzorami f(x)=2x+3, g(x)=-3x+8 przecinają oś OX odpowiednio w punktach A oraz B. Wyznacz punkt przecięcia C wykresów tych funkcji i oblicz pole trójkąta ABC.
2. Punkt przecięcia wykresów funkcji f i g określonych za pomocą wzorówma współrzędne:
a) (1,-4);
b) (-1,4);
c) (-4,1);
d) (4,-1).
1. Do równania 3x-2y=6 dopisz takie równanie, aby otrzymany układ równań:
a) miał jedno rozwiązanie;
b) nie miał rozwiązań;
c) miał nieskończenie wiele rozwiązań.
W urnie są 3 kule białe i 2 czarne. Losujemy jedną kulę 2 razy zwracając ją za każdym razem do urny. Jakie jest prawdopodobieństwo wylosowania kuli białej co najmniej raz ?
Wśród n losów loterii fantowej 6 losów wygrywa. Jaka musi być liczba losów, aby prawdopodobieństwo tego, że zakupione 2 losy będą wygrywające było równe 1/3 ?
Dwunastoosobowa grupa studencka, w której jest 7 kobiet otrzymała 3 bilety do opery. Bilety rozdzielono drogą losowania. Jakie jest prawdopodobieństwo, że wśród posiadaczy biletów:
a) będą dokładnie 2 kobiety
b) będzie przynajmniej 1 kobieta?
Mając tabelę dystrybuanty rozkładu normalnego N(0,1) wylicz prawdopodobieństwo, że: – 1≤x≤4 dla rozkładu N(0.5, 2.25).
5. Dla rozkładu:
dla: 0≤x≤3, a dla pozostałych x
Wylicz wartość średnią, wariancję i odchylenie standardowe.
2. Następujące liczby przypisano siedmiu niezależnym zdarzeniom: 3/4; 2/3; 1/2; 2/5; 3/8; 4/9; 5/8. Utwórz z nich rozkład prawdopodobieństwa.
Z pojemnika, w którym w znajduje się 18 kul z numerami od 1 do 7, wyciągano jedną kulę, za każdym razem wrzucając ją z powrotem. Wiedząc, że „1” wyciągnięto 1665 razy, „2”- 1100, „3”- 2830, „4”- 576, „5”- 542, „6”-1620, a „7”- 1667 razy, podaj rozkład prawdopodobieństwa dla ponumerowanych kul. Wylicz najbardziej prawdopodobną liczbę kul z poszczególnymi numerami, średni numer wyciągniętych kul i wariancję rozkładu.
((570:2)+950)(6:2)
Przyjmując, że linie ZK oraz AB są do siebie prostopadłe, oblicz długość odcinka AB (w km). Promień Ziemi(odcinki ZA i ZB) wynosi 6371 km.
http://fizyka.zamkor.pl/download/wirtualne_obserwacje/karta_pracy_1_210812.pdf obrazek do zadania znajduje się w linku
-
Zbadaj i narysuj
a) f(x)=x*![]()
b) f(x)=e^(
)$
Dla jakiego a funkcja
f(x)\left\{\begin{matrix}ax\ dla\: x\geq -1\\
x^{3}-1\ dla\: x < 1
\end{matrix}\right.
jest cągła? + rysunek
f(x)=+1